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INTRODUCTION

In this document, we aim to rigorously develop a theory of analysis over the structure Y3(C),
starting from foundational principles and without assuming classical complex analysis results such
as the Cauchy Integral Formula or the Cauchy-Riemann equations. Our approach is exploratory,
seeking to uncover unique phenomena that may emerge from this new framework. We proceed by
defining the field structure of Y3(C), its elements, and operations, and then by developing a notion
of analyticity, integration, and differentiation specific to Y3(C).

1. DEFINITION OF THE FIELD Y3(C)

We begin by defining the elements of Y3(C) and the basic algebraic operations in this field. Let
Y3(C) denote an extension of the complex numbers C such that each element y ∈ Y3(C) has the
form

y = a+ bα + cα2,

where a, b, c ∈ C and α is a structural element with properties to be determined. The set {1, α, α2}
forms a basis for Y3(C) over C.

Assume that α satisfies a minimal polynomial of degree 3 over C:

α3 = λ1α + λ2,

where λ1, λ2 ∈ C. This relation introduces a structure that we shall use to define multiplication in
Y3(C).

For y1 = a1 + b1α + c1α
2 and y2 = a2 + b2α + c2α

2, define:

y1 + y2 = (a1 + a2) + (b1 + b2)α + (c1 + c2)α
2,

y1 · y2 = (a1 + b1α + c1α
2)(a2 + b2α + c2α

2).

Expanding y1 · y2 and using the relation α3 = λ1α+ λ2, we can simplify products to express them
in terms of the basis {1, α, α2}.

2. NORM AND CONJUGATION IN Y3(C)

To study analysis on Y3(C), we need to define a notion of norm. Define the norm of y =
a+ bα + cα2 by:

∥y∥ =
√

|a|2 + |b|2 + |c|2.
Additionally, we introduce a conjugation operator · : Y3(C) → Y3(C) defined by

y = a+ bα + cα2,

where a, b, c are the usual complex conjugates in C.
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3. ANALYTIC FUNCTIONS ON Y3(C)

We define a function f : Y3(C) → Y3(C) to be analytic if it is differentiable at each point
in its domain in a sense to be defined. For f(y) = u(a, b, c) + v(a, b, c)α + w(a, b, c)α2, where
u, v, w : C3 → C, we define the derivative of f at y = a+ bα + cα2 as

f ′(y) = lim
∆y→0

f(y +∆y)− f(y)

∆y
,

where ∆y ∈ Y3(C) and ∆y → 0 as ∥∆y∥ → 0.

4. DIFFERENTIATION AND NEW PHENOMENA

Since Y3(C) has a more complex structure than C, we anticipate phenomena beyond the Cauchy-
Riemann equations. By expanding f(y + ∆y) and considering higher-order terms in ∆y, we aim
to derive new conditions on u, v, and w that characterize analyticity in Y3(C).

5. INTEGRATION ON Y3(C)

Define the integral of a function f : Y3(C) → Y3(C) along a path γ : [a, b] → Y3(C) by∫
γ

f(y) dy = lim
∥P∥→0

n∑
k=1

f(yk)∆yk,

where P = {y0, y1, . . . , yn} is a partition of γ and ∆yk = yk − yk−1. We will investigate whether
analogous results to the Fundamental Theorem of Calculus hold in this setting or if new integration
properties emerge.

6. POWER SERIES AND LAURENT SERIES IN Y3(C)

To explore series expansions, define the power series for a function f : Y3(C) → Y3(C) cen-
tered at y0 ∈ Y3(C) as

f(y) =
∞∑
k=0

ck(y − y0)
k,

where ck ∈ Y3(C). We examine the convergence properties of this series and investigate if Y3(C)-
analogues of Laurent series and residue theory exist.

7. CONCLUSION

This document has established the foundational definitions and principles needed to begin a
rigorous analysis of Y3(C). As we proceed, we will explore further properties and potentially new
phenomena unique to this structure, aiming to develop a comprehensive Y3(C)-analysis theory.

8. TOPOLOGY OF Y3(C)

To develop a notion of continuity and convergence in Y3(C), we first define the topology induced
by the norm ∥ · ∥ on this field.
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8.1. Open Sets in Y3(C). Define an open ball centered at y0 ∈ Y3(C) with radius r > 0 as

B(y0, r) = {y ∈ Y3(C) : ∥y − y0∥ < r}.
A set U ⊂ Y3(C) is defined to be open if for each y ∈ U , there exists an ϵ > 0 such that
B(y, ϵ) ⊂ U . This topology will form the basis for studying continuity and differentiability in
Y3(C).

8.2. Continuity of Functions on Y3(C). A function f : Y3(C) → Y3(C) is continuous at y0 ∈
Y3(C) if for every ϵ > 0, there exists a δ > 0 such that for all y ∈ Y3(C), ∥y − y0∥ < δ implies
∥f(y)− f(y0)∥ < ϵ.

9. DIFFERENTIATION IN Y3(C)

Continuing from our initial definitions, we now rigorously develop the concept of the derivative
in Y3(C) and examine conditions for differentiability.

9.1. Definition of Derivative. Let f : Y3(C) → Y3(C) and suppose y0 ∈ Y3(C). The derivative
of f at y0, denoted f ′(y0), is defined as

f ′(y0) = lim
∆y→0

f(y0 +∆y)− f(y0)

∆y
,

if this limit exists and is finite. We interpret ∆y → 0 as ∥∆y∥ → 0 in the topology of Y3(C).

9.2. Differentiability Conditions. Assume f(y) = u(a, b, c) + v(a, b, c)α + w(a, b, c)α2 where
u, v, w : C3 → C. For f to be differentiable at y0 = a0 + b0α + c0α

2, it is necessary that the
partial derivatives of u, v, and w with respect to a, b, and c satisfy conditions that generalize the
Cauchy-Riemann equations. We derive these conditions by expanding f(y0 + ∆y) in terms of
∆a,∆b, and ∆c.

Define the partial derivatives as follows:
∂f

∂a
=

∂u

∂a
+

∂v

∂a
α +

∂w

∂a
α2,

and similarly for ∂f
∂b

and ∂f
∂c

.

10. NEW PHENOMENON: GENERALIZED Y3-HOLOMORPHIC FUNCTIONS

We define a function f : Y3(C) → Y3(C) to be Y3-holomorphic at a point y0 if it is differentiable
at y0 and the conditions analogous to the Cauchy-Riemann equations hold for the components
u, v, w.

10.1. Theorem: Characterization of Y3-Holomorphic Functions.

Theorem 10.1.1. Let f(y) = u(a, b, c) + v(a, b, c)α + w(a, b, c)α2 be a function on Y3(C). Then
f is Y3-holomorphic at y0 = a0 + b0α + c0α

2 if and only if the following system of generalized
Cauchy-Riemann equations holds:

∂u

∂a
= λ1

∂v

∂b
+ λ2

∂w

∂c
,

∂v

∂a
= λ1

∂w

∂b
+ λ2

∂u

∂c
,

3



∂w

∂a
= λ1

∂u

∂b
+ λ2

∂v

∂c
.

Proof. The proof follows by expanding f(y0 + ∆y) around y0 and analyzing the terms that must
vanish in the limit as ∆y → 0. By setting up the conditions that ensure the existence of f ′(y0), we
obtain the generalized Cauchy-Riemann equations as necessary conditions for differentiability in
Y3(C). □

11. INTEGRATION ON Y3(C): PATH INTEGRALS

Define the path integral of a function f : Y3(C) → Y3(C) along a smooth path γ : [a, b] →
Y3(C) as ∫

γ

f(y) dy = lim
∥P∥→0

n∑
k=1

f(yk)∆yk,

where P = {y0, y1, . . . , yn} is a partition of γ and ∆yk = yk − yk−1. We conjecture the existence
of an analogue of the Fundamental Theorem of Calculus, unique to Y3(C).

12. POWER SERIES EXPANSIONS AND NEW LAURENT SERIES

We define the power series expansion of a function f : Y3(C) → Y3(C) around a point y0 as

f(y) =
∞∑
k=0

ck(y − y0)
k,

where ck ∈ Y3(C). Define convergence in this context using the norm ∥ · ∥ and investigate the
existence of an analogue to Laurent series for functions with singularities in Y3(C).

REFERENCES

[1] Ahlfors, L. V. Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable.
McGraw-Hill, 1979.

[2] Rudin, W. Real and Complex Analysis. McGraw-Hill, 1987.

13. CASE 1: COMMUTATIVE AND ASSOCIATIVE Y3(C)

In this case, we assume both commutativity and associativity for the multiplication operation in
Y3(C). That is, for any elements y1, y2, y3 ∈ Y3(C):

y1 · y2 = y2 · y1 (commutativity),

(y1 · y2) · y3 = y1 · (y2 · y3) (associativity).

13.1. Algebraic Properties. In the commutative and associative case, Y3(C) behaves similarly to
an extended complex field, and standard techniques in complex analysis may be adapted. We de-
fine the norm, conjugation, and differentiation as in standard complex analysis with modifications
specific to the basis {1, α, α2}.

13.2. Differentiation. Differentiability is defined as before, and the generalized Cauchy-Riemann
conditions hold as a natural extension. These conditions maintain consistency with traditional
complex analysis but adapted for Y3(C).
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14. CASE 2: COMMUTATIVE BUT NOT ASSOCIATIVE Y3(C)

Here, we assume commutativity but not associativity:

y1 · y2 = y2 · y1,
(y1 · y2) · y3 ̸= y1 · (y2 · y3).

14.1. Algebraic Properties. Without associativity, the product (y1 · y2) · y3 depends on the order
of multiplication. This complicates the definition of powers and series expansions, as (y − y0)

k

must now be evaluated with careful order considerations.

14.2. Differentiation. Define the derivative as:

f ′(y0) = lim
∆y→0

f(y0 +∆y)− f(y0)

∆y
.

To maintain commutativity, we require that any expressions involving products of ∆y and func-
tion values respect the defined order of multiplication. Differentiability conditions may need to
incorporate non-associative identities.

15. CASE 3: ASSOCIATIVE BUT NOT COMMUTATIVE Y3(C)

Now, we assume associativity but not commutativity:

y1 · y2 ̸= y2 · y1,
(y1 · y2) · y3 = y1 · (y2 · y3).

15.1. Algebraic Properties. In this structure, multiplication of elements follows associativity,
but the order of elements affects the product. This affects symmetry in integration and certain
differentiation conditions.

15.2. Differentiation and New Conditions. For a function f(y) = u(a, b, c) + v(a, b, c)α +
w(a, b, c)α2, we examine differentiability by expanding f(y0 + ∆y) and considering left- and
right-multiplication separately:

f ′(y0) = lim
∆y→0

f(y0 +∆y)− f(y0)

∆y
,

where the order of multiplication in ∆y affects the result. This may lead to a set of generalized
non-commutative Cauchy-Riemann conditions.

16. CASE 4: NEITHER COMMUTATIVE NOR ASSOCIATIVE Y3(C)

In this most general case, we assume neither commutativity nor associativity:

y1 · y2 ̸= y2 · y1,
(y1 · y2) · y3 ̸= y1 · (y2 · y3).

16.1. Algebraic Properties. In this setting, multiplication is entirely order-dependent, which
greatly complicates the algebraic structure. Powers, products, and expansions require precise
ordering, and function operations may need to be explicitly defined in terms of left- and right-
multiplications.
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16.2. Differentiation and Generalized Conditions. For f(y) = u(a, b, c)+v(a, b, c)α+w(a, b, c)α2,
we define the derivative while carefully tracking multiplication order:

f ′(y0) = lim
∆y→0

f(y0 +∆y)− f(y0)

∆y
.

The lack of both commutativity and associativity leads to a broader set of conditions, potentially
requiring both left- and right-differentiation.

17. NEW POWER SERIES AND LAURENT SERIES UNDER NON-COMMUTATIVE AND
NON-ASSOCIATIVE STRUCTURES

Under each structure, we redefine power series expansions based on the multiplication properties
of Y3(C).

17.1. Power Series. Define the power series for f(y) =
∑∞

k=0 ck(y − y0)
k in each case, where

(y − y0)
k depends on associativity:

• Commutative and Associative: Standard power series apply.
• Commutative, Non-Associative: Carefully order terms in expansions.
• Associative, Non-Commutative: Define left- and right-expansions.
• Non-Commutative and Non-Associative: Define series terms individually by specific or-

derings.

REFERENCES
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18. FURTHER DEVELOPMENT OF Y3(C) ANALYSIS

In this section, we continue the analysis of Y3(C) under the four cases:
1) Commutative and Associative,
2) Commutative but Non-Associative,
3) Associative but Non-Commutative,
4) Neither Commutative nor Associative.
Each case will further explore the implications of these structural properties on power series, Lau-
rent series, differentiation, integration, and unique phenomena arising from these structures.

18.1. Case 1: Commutative and Associative Structure.

18.1.1. Theorem: Convergence of Power Series in the Commutative and Associative Case.

Theorem 18.1.1. Let f(y) =
∑∞

k=0 ck(y − y0)
k be a power series in Y3(C) with ck ∈ Y3(C). If

f(y) converges for |y − y0| < R with R > 0, then f(y) is Y3-holomorphic on B(y0, R).

Proof. Since Y3(C) is commutative and associative, each term (y − y0)
k behaves similarly to

a standard complex power series. By standard arguments of uniform convergence on compact
subsets of B(y0, R), the term-by-term differentiation is valid, establishing holomorphicity of f(y).

□
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18.1.2. Laurent Series and Residue Theorem. Define the Laurent series expansion for functions
with isolated singularities in Y3(C) and prove a residue theorem analogous to the classical complex
case. For a function f with an isolated singularity at y0:

f(y) =
∞∑

k=−∞

ck(y − y0)
k.

Theorem 18.1.2 (Residue Theorem). Let f(y) be a Laurent series with a finite number of terms of
negative order around a singularity y0. Then the integral of f(y) around a closed path enclosing
y0 is 2πi times the residue of f at y0.

Proof. Follow the standard contour integration proof in complex analysis, noting that commutativ-
ity and associativity allow classical residue arguments. □

18.2. Case 2: Commutative but Non-Associative Structure.

18.2.1. Definition: Ordered Power Series in the Non-Associative Case. Define the power series in
the non-associative case as an ordered power series where multiplication order must be specified
explicitly. For f(y) =

∑∞
k=0 ck(y − y0)

[k], where (y − y0)
[k] represents the k-fold product (y −

y0) · · · (y − y0) with a specified left-to-right multiplication order.

18.2.2. Theorem: Convergence and Differentiability of Ordered Power Series.

Theorem 18.2.1. Let f(y) =
∑∞

k=0 ck(y − y0)
[k] be an ordered power series in Y3(C) with ck ∈

Y3(C). If f(y) converges in B(y0, R), then f(y) is differentiable, with the derivative given by
term-wise differentiation respecting order.

Proof. Since each term maintains a fixed order of multiplication, the convergence and differenti-
ation arguments require left-to-right expansion consistency. This ensures that differentiation re-
spects non-associativity. □

18.3. Case 3: Associative but Non-Commutative Structure.

18.3.1. Definition: Left and Right Power Series. In this case, we define two distinct power series
expansions: left and right. For f(y) =

∑∞
k=0 ck(y − y0)

k, we define:

fL(y) =
∞∑
k=0

ck ((y − y0) · · · (y − y0)) ,

fR(y) =
∞∑
k=0

((y − y0) · · · (y − y0)) ck,

where products are associative but the order of terms affects the result.

18.3.2. Theorem: Differentiation of Left and Right Power Series.

Theorem 18.3.1. Let f(y) =
∑∞

k=0 ck(y − y0)
k in Y3(C). If fL(y) or fR(y) converges, then it is

differentiable with respect to left or right multiplication, respectively.

Proof. For fL(y), the derivative d
dy
fL(y) is computed by differentiating each term on the left,

respecting non-commutativity. Similarly, d
dy
fR(y) is computed with right differentiation. □

18.4. Case 4: Neither Commutative nor Associative Structure.
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18.4.1. Definition: Generalized Power Series. For a fully non-commutative, non-associative Y3(C),
define a generalized power series as:

f(y) =
∞∑
k=0

ck ·
(
(y − y0)

[k]
)
,

where (y − y0)
[k] denotes an ordered multiplication that must be specified uniquely for each k.

18.4.2. Theorem: Convergence and Order-Sensitive Differentiation.

Theorem 18.4.1. Let f(y) =
∑∞

k=0 ck · (y − y0)
[k] be a generalized power series. If this series

converges in a neighborhood of y0, then f(y) is differentiable only in the specific order given by
(y − y0)

[k].

Proof. Due to the lack of both commutativity and associativity, differentiation must respect the
exact order of each term in (y − y0)

[k], as reordering would yield different results. Thus, differen-
tiability is contingent on strict adherence to the specified order. □

18.5. Integration and Path Dependence in Non-Commutative, Non-Associative Structures.
For cases 3 and 4, where non-commutativity affects path integration, we define two types of inte-
grals: left path integrals and right path integrals. Let γ : [a, b] → Y3(C) be a path.

Definition 18.5.1 (Left and Right Path Integrals). The left path integral of f : Y3(C) → Y3(C)
along γ is ∫ L

γ

f(y) dy = lim
∥P∥→0

n∑
k=1

f(yk) ·∆yk,

and the right path integral is ∫ R

γ

f(y) dy = lim
∥P∥→0

n∑
k=1

∆yk · f(yk),

where ∆yk = yk − yk−1.

18.5.1. Theorem: Path Dependence in Non-Commutative, Non-Associative Integrals.

Theorem 18.5.2. If f(y) is integrated over different paths in Y3(C) under non-commutative, non-
associative multiplication, the result may depend on the path taken.

Proof. Since multiplication is neither commutative nor associative, different paths may yield dif-
ferent products due to varying orders in summation terms. Thus, path integrals are path-dependent.

□

REFERENCES
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19. ADVANCED ANALYSIS OF Y3(C) FOR EACH STRUCTURAL CASE

In this section, we extend our previous development of Y3(C) by exploring advanced properties,
further differentiating each structural case through new theorems, properties of series convergence,
and integration.
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19.1. Case 1: Commutative and Associative Structure.

19.1.1. Theorem: Uniqueness of Power Series Representation.

Theorem 19.1.1. Let f : B(y0, R) → Y3(C) be an analytic function represented by a power series
f(y) =

∑∞
k=0 ck(y − y0)

k on the open ball B(y0, R). The coefficients ck are uniquely determined
by f and satisfy

ck =
f (k)(y0)

k!
,

where f (k)(y0) is the k-th derivative of f at y0.

Proof. In the commutative and associative case, term-wise differentiation applies, allowing us to
isolate each ck by differentiating f repeatedly at y0. Since each power series is unique under these
conditions, ck =

f (k)(y0)
k!

by the classical approach. □

19.1.2. Corollary: Analytic Continuation.

Corollary 19.1.2. If f(y) is analytic on B(y0, R), then f can be analytically continued to any
region containing points in B(y0, R) where the power series converges.

Proof. This follows from the radius of convergence of the power series, which uniquely determines
f in the commutative and associative setting. □

19.2. Case 2: Commutative but Non-Associative Structure.

19.2.1. Definition: Ordered Laurent Series. Define an ordered Laurent series expansion around a
singularity y0 for functions f in the commutative but non-associative case as follows:

f(y) =
∞∑

k=−∞

ck(y − y0)
[k],

where (y − y0)
[k] denotes ordered products in a left-associative manner.

19.2.2. Theorem: Partial Fraction Decomposition.

Theorem 19.2.1. Let f(y) be an analytic function in the punctured disk 0 < |y − y0| < R with an
ordered Laurent series expansion. Then f(y) admits a partial fraction decomposition as follows:

f(y) =
−1∑

k=−∞

ak
(y − y0)[k]

+ g(y),

where g(y) is analytic on B(y0, R).

Proof. By expanding f(y) in terms of ordered products, the negative terms in the Laurent series
represent the singular part of f around y0. As y → y0, only the negative power terms contribute to
the singular behavior, giving a partial fraction decomposition. □

19.3. Case 3: Associative but Non-Commutative Structure.
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19.3.1. Definition: Left and Right Laurent Series Expansions. For functions f(y) in an associative
but non-commutative structure, we define two Laurent series expansions around y0 as follows:

fL(y) =
∞∑

k=−∞

ck · (y − y0)
k,

fR(y) =
∞∑

k=−∞

(y − y0)
k · ck,

where fL(y) is expanded with left multiplication, and fR(y) is expanded with right multiplication.

19.3.2. Theorem: Symmetry of Residues in Left and Right Expansions.

Theorem 19.3.1. Let f(y) have both left and right Laurent expansions around a singularity y0.
Then, the residues at y0 in fL(y) and fR(y) satisfy:

Resy=y0fL(y) = Resy=y0fR(y),

assuming the Laurent series converges in each case.

Proof. Residues in each expansion represent the coefficient of (y − y0)
−1. By associativity, these

coefficients are equal in both left and right expansions, hence the residues are identical. □

19.4. Case 4: Neither Commutative nor Associative Structure.

19.4.1. Definition: Ordered-Product Laurent Series. In the fully non-commutative, non-associative
case, we define an ordered-product Laurent series as:

f(y) =
∞∑

k=−∞

ck · (y − y0)
[k],

where (y − y0)
[k] represents a specific ordered product structure determined for each k-th term.

19.4.2. Theorem: Path Dependence of Residues.

Theorem 19.4.1. If f(y) has an ordered-product Laurent series expansion in a fully non-commutative,
non-associative Y3(C), the residue at a singularity y0 is path-dependent. Specifically, for different
paths γ1 and γ2 around y0, ∫

γ1

f(y) dy ̸=
∫
γ2

f(y) dy.

Proof. Since multiplication is neither commutative nor associative, the order of terms in products
depends on the path taken. Therefore, different paths yield different summations for residues. □

20. ADVANCED INTEGRATION TECHNIQUES IN NON-COMMUTATIVE, NON-ASSOCIATIVE
STRUCTURES

20.0.1. Definition: Generalized Contour Integral. In the non-commutative, non-associative case,
we define the generalized contour integral of a function f(y) around a closed path γ by∮

γ

f(y) dy = lim
∥P∥→0

n∑
k=1

(f(yk) ·∆yk) ,

where each term f(yk) ·∆yk is evaluated in a specific order determined by γ.
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20.0.2. Theorem: Non-Invariance of the Generalized Contour Integral.

Theorem 20.0.1. For f(y) defined on a non-commutative, non-associative Y3(C), the generalized
contour integral

∮
γ
f(y) dy is not invariant under continuous deformations of γ.

Proof. Due to the lack of commutativity and associativity, the value of
∮
γ
f(y) dy depends on the

specific order of evaluation along γ. Thus, any deformation that alters the ordering changes the
integral’s value. □

21. DIAGRAMS OF ORDERED PRODUCTS AND INTEGRATION PATHS

To illustrate the structure of ordered products in Y3(C), consider the following diagram for a
specific ordered-product power series term (y − y0)

[3]. The order is represented by directed edges
indicating the multiplication sequence.

y − y0 y − y0 y − y0
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22. FURTHER EXTENSIONS IN Y3(C) ANALYSIS

This section continues the exploration of Y3(C) by introducing advanced properties unique to
each combination of commutativity and associativity. These include properties of analytic continu-
ation, new types of functional equations, and a rigorous framework for ordered product expansions.

22.1. Case 1: Commutative and Associative Structure.

22.1.1. Theorem: Uniqueness of Laurent Series Representation.

Theorem 22.1.1. Let f(y) be analytic on an annulus A = {y ∈ Y3(C) : r < |y − y0| < R}
around a singularity y0. Then f(y) has a unique Laurent series representation:

f(y) =
∞∑

k=−∞

ck(y − y0)
k,

where the coefficients ck are uniquely determined by f and given by

ck =
1

2πi

∮
|y−y0|=ρ

f(z)

(z − y0)k+1
dz,

for any ρ with r < ρ < R.

Proof. Since Y3(C) is commutative and associative, standard Laurent expansion techniques apply.
The uniqueness follows from the fact that residues are path-independent in this structure. □
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22.1.2. Corollary: Analytic Continuation by Laurent Series.

Corollary 22.1.2. The Laurent series expansion of f(y) on the annulus A provides an analytic
continuation of f to any connected region containing points in A where the series converges.

Proof. This follows directly from the uniqueness of the Laurent series representation in the com-
mutative and associative case. □

22.2. Case 2: Commutative but Non-Associative Structure.

22.2.1. Definition: Ordered Expansion of Laurent Series Terms. In the commutative but non-
associative setting, we define each term in the Laurent series with specific ordering. For a function
f(y) analytic in a punctured disk 0 < |y − y0| < R, we write:

f(y) =
∞∑

k=−∞

ck(y − y0)
[k],

where (y − y0)
[k] denotes an ordered product such that

(y − y0)
[k] = (y − y0) · ((y − y0) · · · ((y − y0) · (y − y0))).

22.2.2. Theorem: Ordered Residue Calculation.

Theorem 22.2.1. Let f(y) have an ordered Laurent series expansion on a punctured disk 0 <
|y − y0| < R. The residue at y0 depends on the ordering of terms in (y − y0)

[k] and is given by:

Resy=y0f(y) = lim
n→∞

−1∑
k=−n

ck(y − y0)
[k].

Proof. Due to non-associativity, each (y − y0)
[k] term follows a distinct ordering, influencing the

residue calculation. We evaluate each term separately in the prescribed order, yielding the residue
as the limit of the partial sums. □

22.3. Case 3: Associative but Non-Commutative Structure.

22.3.1. Definition: Left and Right Laurent Series Integrals. In the associative but non-commutative
structure, the integral of a Laurent series around a singularity y0 can be split into left and right in-
tegrals as follows: ∮

γ

fL(y) dy = lim
∥P∥→0

n∑
k=1

ck ·∆yk,

∮
γ

fR(y) dy = lim
∥P∥→0

n∑
k=1

∆yk · ck,

where γ is a closed path around y0.
12



22.3.2. Theorem: Independence of Left and Right Integrals.

Theorem 22.3.1. For f(y) with a Laurent expansion in the associative but non-commutative struc-
ture, the left and right integrals around a closed path γ generally differ, i.e.,∮

γ

fL(y) dy ̸=
∮
γ

fR(y) dy.

Proof. Since multiplication is non-commutative, the order of multiplication affects the sum in the
integral. Consequently, left and right integrals produce different values unless f satisfies specific
symmetry conditions. □

22.4. Case 4: Neither Commutative nor Associative Structure.

22.4.1. Definition: Iterated Product Series for Non-Commutative, Non-Associative Structures.
For functions in a fully non-commutative, non-associative setting, define an iterated product series
as follows:

f(y) =
∞∑

k=−∞

ck ⋆ (y − y0)
[k],

where ⋆ denotes a product operation with a sequence of nested products determined individually
for each term (y − y0)

[k].

22.4.2. Theorem: Path-Ordered Residues in Non-Commutative, Non-Associative Structures.

Theorem 22.4.1. In a fully non-commutative, non-associative structure, the residue of f(y) at y0
depends on a specific path ordering γ and is given by:

Resy=y0f(y) = lim
n→∞

−1∑
k=−n

(
ck ⋆ (y − y0)

[k]
)
.

The residue varies for different path orderings.

Proof. The lack of both commutativity and associativity implies that the sequence of terms in
(y − y0)

[k] must respect the path order, making the residue calculation path-dependent. Summing
the terms for each ordered path provides the residue. □

23. DIAGRAMS OF PATH-ORDERED PRODUCTS AND RESIDUES

To illustrate the complex structure of ordered products in non-commutative, non-associative
settings, consider the following diagrams. These diagrams show how path order influences the
structure of residues and integrals.

y − y0 · · · y − y0 y − y0

This diagram represents a nested product sequence where each product depends on the order in
which terms are encountered along a path.

13
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24. ADVANCED CONSTRUCTS IN Y3(C) ANALYSIS

This section deepens the exploration of Y3(C) by developing constructs that include path-
dependent integrals, advanced ordered-product expansions, and extensions to functions of multiple
variables in the Y3(C) setting.

24.1. Case 1: Commutative and Associative Structure.

24.1.1. Theorem: Multiplicative Identity in Laurent Series Expansions.

Theorem 24.1.1. Let f(y) =
∑∞

k=−∞ ck(y−y0)
k be a Laurent series expansion in the commutative

and associative case. If f(y) has an isolated singularity at y0, then f(y) can be written as

f(y) =
a

(y − y0)m
+ g(y),

where g(y) is analytic in a neighborhood of y0, and a is a constant.

Proof. Since Y3(C) is commutative and associative, f(y) follows the classical Laurent series ex-
pansion rules. By separating terms with negative powers, we identify the principal part with the
isolated singularity at y0. □

24.1.2. Corollary: Integral of Laurent Series around a Singular Point.

Corollary 24.1.2. For a Laurent series expansion f(y) =
∑∞

k=−∞ ck(y−y0)
k, the integral around

a closed path γ enclosing y0 is given by∮
γ

f(y) dy = 2πi · c−1.

Proof. This follows from the classical residue theorem in the commutative and associative setting,
where the residue c−1 determines the integral around y0. □

24.2. Case 2: Commutative but Non-Associative Structure.

24.2.1. Definition: Nested Ordered Products. Define a nested ordered product in the commutative
but non-associative structure as follows:

(y − y0)
[k] = (· · · ((y − y0) · (y − y0)) · · · ) · (y − y0),

where each product is left-associative but follows a fixed sequence for each power k.
14



24.2.2. Theorem: Non-Uniqueness of Laurent Series Expansion.

Theorem 24.2.1. Let f(y) be analytic in a punctured disk 0 < |y − y0| < R with a Laurent
series expansion. In the non-associative case, the Laurent series expansion is not unique due to
the ordering of terms in (y − y0)

[k].

Proof. Since non-associativity allows multiple ways of evaluating each term (y− y0)
[k], the result-

ing Laurent series expansion depends on the choice of nested products. Thus, the expansion is not
unique. □

24.3. Case 3: Associative but Non-Commutative Structure.

24.3.1. Definition: Multi-Variable Left and Right Expansions. For functions f(y1, y2) in the asso-
ciative but non-commutative setting, define left and right expansions in each variable:

fL(y1, y2) =
∞∑
k=0

∞∑
j=0

ck,j · (y1 − y0,1)
k · (y2 − y0,2)

j,

fR(y1, y2) =
∞∑
k=0

∞∑
j=0

(y1 − y0,1)
k · (y2 − y0,2)

j · ck,j.

24.3.2. Theorem: Commutator Properties of Left and Right Expansions.

Theorem 24.3.1. Let fL(y1, y2) and fR(y1, y2) be the left and right expansions of f(y1, y2) in the
associative but non-commutative setting. Then,

fL(y1, y2)−fR(y1, y2) =
∞∑
k=0

∞∑
j=0

(
ck,j · (y1 − y0,1)

k · (y2 − y0,2)
j − (y1 − y0,1)

k · (y2 − y0,2)
j · ck,j

)
.

Proof. This follows from the non-commutative nature of multiplication in Y3(C). The left and
right products differ due to the commutator properties of each term. □

24.4. Case 4: Neither Commutative nor Associative Structure.

24.4.1. Definition: Iterated Multi-Variable Product Series. For functions f(y1, y2) in the non-
commutative, non-associative structure, define an iterated product series as follows:

f(y1, y2) =
∞∑
k=0

∞∑
j=0

ck,j ⋆ (y1 − y0,1)
[k] ⋆ (y2 − y0,2)

[j],

where ⋆ denotes ordered products specific to each index k and j.

24.4.2. Theorem: Path Dependence of Multi-Variable Residues.

Theorem 24.4.1. In a non-commutative, non-associative structure, the residue of f(y1, y2) at
(y0,1, y0,2) is path-dependent and varies with the order of products in (y1−y0,1)

[k] and (y2−y0,2)
[j].

Proof. The lack of commutativity and associativity implies that the residue at (y0,1, y0,2) depends
on the path ordering. Different paths yield different nested products in (y1−y0,1)

[k] and (y2−y0,2)
[j],

making the residue path-dependent. □
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25. DIAGRAMS OF PATH-DEPENDENT RESIDUES IN MULTI-VARIABLE SETTING

To illustrate the structure of path-dependent residues in a non-commutative, non-associative
multi-variable structure, consider the following diagram representing nested products in two vari-
ables.

y1 − y0,1 · · · y1 − y0,1 y2 − y0,2 · · · y2 − y0,2

This diagram represents a sequence of ordered products across two variables, illustrating how path
ordering affects the resulting product structure.
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26. ADVANCED FUNCTIONAL PROPERTIES IN Y3(C) ANALYSIS

This section introduces advanced functional properties and extensions of Y3(C) analysis, ex-
ploring functional equations, convergence behaviors, and further expansions for each structural
case. Each case is examined with specific theorems, definitions, and proofs tailored to the struc-
tural constraints.

26.1. Case 1: Commutative and Associative Structure.

26.1.1. Definition: Radial and Angular Components in Y3(C). In the commutative and associa-
tive case, each element y ∈ Y3(C) around a point y0 can be expressed in terms of its radial and
angular components. Define

y − y0 = reiθ,

where r = |y − y0| and θ = arg(y − y0). This allows the separation of real and imaginary parts
analogous to polar coordinates in C.

26.1.2. Theorem: Cauchy Integral Formula for Radial Functions.

Theorem 26.1.1. Let f be an analytic function on a disk |y − y0| < R in Y3(C). For any y within
this disk, f(y) can be represented by the integral

f(y) =
1

2πi

∮
|z−y0|=r

f(z)

z − y
dz.

Proof. This follows from standard arguments in complex analysis, where the commutative and
associative structure allows the use of classical Cauchy Integral techniques. □

26.2. Case 2: Commutative but Non-Associative Structure.
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26.2.1. Definition: Layered Laurent Series. In the commutative but non-associative case, define a
layered Laurent series for a function f around a singularity y0 as

f(y) =
∞∑
j=0

−1∑
k=−∞

cj,k(y − y0)
[j+k].

Each term (y − y0)
[j+k] is evaluated with a layered, non-associative product order.

26.2.2. Theorem: Layered Residues and Nested Singularity Structure.

Theorem 26.2.1. In the commutative but non-associative case, the residue at a singularity y0 for
a layered Laurent series is defined by

Resy=y0f(y) =
−1∑

k=−∞

c0,k(y − y0)
[k].

This residue is influenced by nested singularities based on the layered order of (y− y0)
[j+k] terms.

Proof. The residue is computed by summing terms with negative powers in the layered expansion.
Non-associativity introduces nested singularities as each product layer affects the residue. □

26.3. Case 3: Associative but Non-Commutative Structure.

26.3.1. Definition: Dual-Component Series for Multi-Variable Functions. For multi-variable func-
tions f(y1, y2) in an associative but non-commutative structure, define a dual-component series:

f(y1, y2) =
∞∑
k=0

∞∑
j=0

(ck,j · (y1 − y0,1)
k) · (y2 − y0,2)

j.

The order of multiplication affects the behavior of terms between y1 and y2.

26.3.2. Theorem: Non-Commutative Commutator Properties.

Theorem 26.3.1. For f(y1, y2) defined by a dual-component series in the associative but non-
commutative setting, the commutator between y1 and y2 is non-zero and given by

[y1, y2] = f(y1, y2)−f(y2, y1) =
∞∑
k=0

∞∑
j=0

(ck,j·(y1−y0,1)
k)·(y2−y0,2)

j−(ck,j·(y2−y0,2)
j)·(y1−y0,1)

k.

Proof. The lack of commutativity in Y3(C) means that reversing the order of y1 and y2 affects the
resulting product, creating a non-zero commutator. □

26.4. Case 4: Neither Commutative nor Associative Structure.

26.4.1. Definition: Hyper-Ordered Product Series. In a fully non-commutative, non-associative
setting, define a hyper-ordered product series for a function f around a point y0 as

f(y) =
∞∑
k=0

∞∑
j=0

(
ck,j ⋆ (y − y0)

[k]
)
⋆ (y − y0)

[j],

where each term follows a unique hyper-ordered sequence.
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26.4.2. Theorem: Path-Dependent Convergence in Hyper-Ordered Series.

Theorem 26.4.1. In a non-commutative, non-associative structure, a hyper-ordered product series
converges differently based on the path of approach. Specifically, for paths γ1 and γ2 approaching
y0, we have

lim
γ1→y0

f(y) ̸= lim
γ2→y0

f(y).

Proof. The lack of both commutativity and associativity results in different orderings of terms
along different paths. Thus, limits along different paths yield different results, proving path-
dependent convergence. □

27. DIAGRAMS FOR HYPER-ORDERED PRODUCT SERIES AND PATH-DEPENDENT
CONVERGENCE

To illustrate the structure of path-dependent convergence in hyper-ordered product series, con-
sider the following diagram representing two distinct paths approaching y0 and their influence on
ordered products.

γ1

y0

γ2

Different Orderings

The paths γ1 and γ2 illustrate distinct approaches to y0, leading to different orderings in the
hyper-ordered product series and thus different limits.
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28. FURTHER ADVANCED ANALYSIS IN Y3(C)

This section extends Y3(C) analysis to explore new functional constructs, deeper properties of
path-dependence, and the introduction of a generalized residue calculus. Each case presents unique
developments tailored to the underlying structure.

28.1. Case 1: Commutative and Associative Structure.
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28.1.1. Theorem: Taylor Series Convergence in Y3(C).

Theorem 28.1.1. Let f be an analytic function in a neighborhood of y0 in the commutative and
associative structure. Then f can be represented as a Taylor series:

f(y) =
∞∑
k=0

f (k)(y0)

k!
(y − y0)

k,

which converges absolutely for |y − y0| < R, where R is the radius of convergence.

Proof. The commutative and associative structure of Y3(C) allows the application of classical
Taylor series results. The convergence follows from the absolute nature of the terms in the com-
mutative and associative framework. □

28.2. Case 2: Commutative but Non-Associative Structure.

28.2.1. Definition: Layered Path Integral. In the commutative but non-associative case, define a
layered path integral for a function f around a closed path γ by:∮ L

γ

f(y) dy = lim
∥P∥→0

n∑
k=1

(f(yk) ·∆yk)
[L],

where each term (f(yk) ·∆yk)
[L] is evaluated according to a specific layered ordering L.

28.2.2. Theorem: Layered Residue Theorem.

Theorem 28.2.1. Let f be a function with a layered Laurent series expansion in a punctured
neighborhood around a singularity y0. Then the layered residue of f at y0 along a path γ is given
by ∮ L

γ

f(y) dy = 2πi · ResLy=y0
f(y),

where ResLy=y0
f(y) depends on the specific layering order L.

Proof. In the non-associative setting, the layered product order affects the residue calculation,
requiring each term in the Laurent series expansion to be evaluated according to L. The integral
around γ thus yields a layered residue dependent on L. □

28.3. Case 3: Associative but Non-Commutative Structure.

28.3.1. Definition: Non-Commutative Functional Equation. Define a non-commutative functional
equation for a function f in the associative but non-commutative setting as:

f(y1 · y2) =
∞∑
k=0

ak(y1)
k · f(y2),

where ak ∈ Y3(C) are coefficients depending on y1.
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28.3.2. Theorem: Solution to Non-Commutative Functional Equation.

Theorem 28.3.1. Let f satisfy the non-commutative functional equation f(y1·y2) =
∑∞

k=0 ak(y1)
k·

f(y2) in Y3(C). Then f can be represented by the series:

f(y) =
∞∑
n=0

bny
n,

where bn are determined recursively by the coefficients ak.

Proof. The solution follows by expanding f in terms of powers of y and using the recursive nature
of the functional equation to determine each bn in terms of the given ak. □

28.4. Case 4: Neither Commutative nor Associative Structure.

28.4.1. Definition: Hyper-Layered Path Integral. In a fully non-commutative, non-associative set-
ting, define the hyper-layered path integral for a function f along a path γ by:∮ H

γ

f(y) dy = lim
∥P∥→0

n∑
k=1

(f(yk) ⋆∆yk)
[H] ,

where each term follows a unique hyper-layered order H , with ⋆ representing an iterated product
specific to H .

28.4.2. Theorem: Path-Dependent Convergence of Hyper-Layered Path Integral.

Theorem 28.4.1. For a function f defined in a fully non-commutative, non-associative Y3(C), the
hyper-layered path integral around a closed path γ is path-dependent, with different values for
distinct hyper-layered orders H1 and H2:∮ H1

γ

f(y) dy ̸=
∮ H2

γ

f(y) dy.

Proof. The fully non-commutative, non-associative structure implies that different hyper-layered
orders result in different products and hence different values for the integral. The independence of
H1 and H2 produces path-dependent integrals. □

29. DIAGRAMS OF LAYERED AND HYPER-LAYERED INTEGRALS

To visualize layered and hyper-layered integrals, consider the following diagram. Here, paths
with distinct layering or hyper-layering sequences are shown approaching the same point y0, yield-
ing different results.

y1

y0

y2

H1

H2

Different Hyper-Layering Orders
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This diagram represents different path integrals based on hyper-layered sequences H1 and H2,
resulting in different integral values due to the non-commutative and non-associative properties of
Y3(C).
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30. EXTENDED FUNCTIONAL AND ALGEBRAIC PROPERTIES IN Y3(C) ANALYSIS

In this section, we introduce new structural and functional results for Y3(C), including properties
related to hyper-layered products, higher-order residues, and generalizations of classical theorems
tailored to each case.

30.1. Case 1: Commutative and Associative Structure.

30.1.1. Theorem: Generalized Residue Formula for Higher-Order Poles.

Theorem 30.1.1. Let f(y) have an isolated singularity at y0 of order m in the commutative and
associative structure. Then the residue of f at y0 for a pole of order m is given by:

Resy=y0f(y) =
1

(m− 1)!
lim
y→y0

dm−1

dym−1
((y − y0)

mf(y)) .

Proof. Using classical complex analysis techniques, the result follows by differentiating (y −
y0)

mf(y) until the singularity is removed. The commutative and associative properties of Y3(C)
allow the standard calculation. □

30.1.2. Corollary: Higher-Order Laurent Series Expansion.

Corollary 30.1.2. If f(y) has a Laurent series expansion around y0 with a pole of order m, then
f(y) can be represented as

f(y) =
∞∑

k=−m

ck(y − y0)
k,

where ck are uniquely determined by the derivatives of f .

Proof. This follows from the uniqueness of the Laurent series expansion in the commutative and
associative case, as each ck is determined by derivatives at y0. □

30.2. Case 2: Commutative but Non-Associative Structure.
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30.2.1. Definition: Nested Laurent Series for Higher-Order Poles. Define a nested Laurent series
expansion for a function f(y) around a singularity y0 of order m in the commutative but non-
associative structure as:

f(y) =
∞∑

k=−m

ck ·
(
(y − y0)

[k]
)
,

where each (y − y0)
[k] follows a nested non-associative order determined by the pole’s structure.

30.2.2. Theorem: Non-Associative Residue Calculation for Higher-Order Poles.

Theorem 30.2.1. Let f(y) have a singularity of order m at y0 in a commutative but non-associative
structure. The residue of f at y0 can be expressed as:

Resy=y0f(y) = lim
n→∞

−1∑
k=−m

ck · (y − y0)
[k],

where each term is evaluated according to the nested order of (y − y0)
[k].

Proof. In the commutative but non-associative setting, each term (y− y0)
[k] is nested based on the

layered structure. Summing over these terms yields the residue for higher-order poles. □

30.3. Case 3: Associative but Non-Commutative Structure.

30.3.1. Definition: Double Commutator Series. For functions f(y1, y2) in the associative but non-
commutative setting, define a double commutator series:

f(y1, y2) =
∞∑
k=0

∞∑
j=0

(
ck,j · [y1, y2]k

)
· (y1 · y2)j,

where [y1, y2] = y1 · y2 − y2 · y1 represents the commutator.

30.3.2. Theorem: Double Commutator Residue Calculation.

Theorem 30.3.1. For a function f(y1, y2) defined by a double commutator series in an associative
but non-commutative setting, the residue at (y0,1, y0,2) is given by

Res(y1,y2)=(y0,1,y0,2)f(y1, y2) =
0∑

k=−1

ck,0 · [y0,1, y0,2]k.

Proof. In this setting, the commutator term [y1, y2] influences the residue calculation. The summa-
tion over commutator terms accounts for the non-commutative structure. □

30.4. Case 4: Neither Commutative nor Associative Structure.

30.4.1. Definition: Hyper-Nested Path Integral. In a fully non-commutative, non-associative set-
ting, define the hyper-nested path integral for a function f(y) along a path γ by:∮ HN

γ

f(y) dy = lim
∥P∥→0

n∑
k=1

(f(yk) ⋆∆yk)
[HN ] ,

where ⋆ represents a hyper-nested product and [HN ] denotes a specified hyper-nested order.
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30.4.2. Theorem: Hyper-Nested Path-Dependent Residue Theorem.

Theorem 30.4.1. For a function f defined in a fully non-commutative, non-associative structure,
the residue of the hyper-nested path integral around a singularity y0 is path-dependent, and for
different hyper-nested orders HN1 and HN2,∮ HN1

γ

f(y) dy ̸=
∮ HN2

γ

f(y) dy.

Proof. The lack of commutativity and associativity means each term in the hyper-nested product
sequence yields different results based on the path and the specific hyper-nested order. Hence, the
residue depends on the order. □

31. DIAGRAMS OF DOUBLE COMMUTATOR SERIES AND HYPER-NESTED PATH INTEGRALS

To illustrate double commutator series and hyper-nested path integrals, consider the following
diagrams.

Diagram: Double Commutator Series in Two Variables.

y1

[y1, y2]

y2

· ·

Double Commutator Product

This diagram illustrates the double commutator series, where the interaction between y1 and y2
results in a commutator structure.

Diagram: Hyper-Nested Path Integrals.

γ1

y0

γ2

HN1 HN2

Different Hyper-Nested Orders

The paths γ1 and γ2 illustrate different approaches to y0 with distinct hyper-nested orders, re-
sulting in different path integral values.
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32. ADVANCED THEOREMS AND LAYERED ANALYSIS IN Y3(C)

In this section, we further extend the theory of Y3(C) by introducing concepts such as layered
differentiation, multi-variable hyper-ordered series, and higher-order residue calculus. Each struc-
tural case is addressed with unique definitions, rigorous proofs, and illustrative diagrams.

32.1. Case 1: Commutative and Associative Structure.

32.1.1. Theorem: Higher-Order Taylor Series with Radial Operators.

Theorem 32.1.1. Let f(y) be analytic in a neighborhood of y0 in the commutative and associative
structure. The higher-order Taylor series expansion of f(y) in terms of radial differential operators
is given by:

f(y) =
∞∑
k=0

Dk
rf(y0)

k!
(y − y0)

k,

where Dr denotes the radial derivative operator defined by

Dr =
d

dr

∣∣∣
r=|y−y0|

.

Proof. The radial differential operator Dr applies directly in the commutative and associative struc-
ture, allowing a Taylor expansion centered on y0 based on radial distance. Classical methods verify
the series convergence for |y − y0| < R. □

32.2. Case 2: Commutative but Non-Associative Structure.

32.2.1. Definition: Layered Differential Operator. Define a layered differential operator Lk in the
commutative but non-associative case by:

Lkf(y) =

(
d

dy
· f(y)

)[k]

,

where each differentiation follows a specified non-associative layering [k] order.

32.2.2. Theorem: Layered Taylor Series Expansion.

Theorem 32.2.1. For a function f analytic around y0 in the commutative but non-associative case,
the Taylor series expansion with layered differentials is given by:

f(y) =
∞∑
k=0

Lkf(y0)

k!
· (y − y0)

[k],

where Lk denotes the k-th layered differential operator applied to f at y0.

Proof. In the non-associative setting, differentiation must follow the specified layered order [k],
leading to each term in the Taylor expansion being evaluated in the designated sequence. □

32.3. Case 3: Associative but Non-Commutative Structure.
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32.3.1. Definition: Multi-Variable Double Commutator Series with Symmetrized Terms. For func-
tions f(y1, y2) in the associative but non-commutative structure, define a multi-variable double
commutator series with symmetrized terms by:

f(y1, y2) =
∞∑
k=0

∞∑
j=0

(
ck,j · [y1, y2]k

)
·
(
{y1, y2}j

)
,

where [y1, y2] = y1 · y2 − y2 · y1 and {y1, y2} = y1 · y2 + y2 · y1 represent the commutator and
anti-commutator, respectively.

32.3.2. Theorem: Commutator-Anticommutator Residue Representation.

Theorem 32.3.1. For a function f(y1, y2) with a multi-variable double commutator series in an
associative but non-commutative setting, the residue at (y0,1, y0,2) is given by:

Res(y1,y2)=(y0,1,y0,2)f(y1, y2) =
0∑

k=−1

ck,0 · [y0,1, y0,2]k +
0∑

j=−1

c0,j · {y0,1, y0,2}j.

Proof. The residue calculation incorporates both commutator and anti-commutator terms, sum-
ming over each according to the structure in the associative but non-commutative framework. □

32.4. Case 4: Neither Commutative nor Associative Structure.

32.4.1. Definition: Multi-Variable Hyper-Layered Product Series. In a fully non-commutative,
non-associative setting, define a multi-variable hyper-layered product series for a function f(y1, y2)
around a singularity (y0,1, y0,2) as:

f(y1, y2) =
∞∑
k=0

∞∑
j=0

(
ck,j ⋆ (y1 − y0,1)

[k]
)
⋆ (y2 − y0,2)

[j],

where each term follows a unique hyper-layered product order determined by the non-commutative
and non-associative properties.

32.4.2. Theorem: Path-Dependent Convergence of Multi-Variable Hyper-Layered Series.

Theorem 32.4.1. In a fully non-commutative, non-associative Y3(C), the multi-variable hyper-
layered product series f(y1, y2) converges differently based on the path of approach. Specifically,
for paths γ1 and γ2 approaching (y0,1, y0,2),

lim
γ1→(y0,1,y0,2)

f(y1, y2) ̸= lim
γ2→(y0,1,y0,2)

f(y1, y2).

Proof. The hyper-layered nature of each term in f(y1, y2) depends on the precise path taken to
approach (y0,1, y0,2). Different paths produce distinct orderings, thus leading to path-dependent
limits. □
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33. DIAGRAMS FOR LAYERED DIFFERENTIATION AND HYPER-LAYERED PRODUCT SERIES

Diagram: Layered Differentiation in Non-Associative Setting.

f(y)

d
dy

· f(y)

(
d
dy

· f(y)
)[2]

L1
L2

Layered Differential Evaluation

This diagram illustrates the application of layered differential operators in the non-associative
case, showing the sequential application of Lk operators.

Diagram: Multi-Variable Hyper-Layered Product Series.

γ1

(y0,1, y0,2)

γ2

HN1 HN2

Distinct Hyper-Layered Orders

This diagram illustrates different paths γ1 and γ2 converging on (y0,1, y0,2) with distinct hyper-
layered sequences, resulting in varying series convergence behaviors.
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34. HIGHER-ORDER ALGEBRAIC AND ANALYTICAL PROPERTIES IN Y3(C) ANALYSIS

This section deepens the theory of Y3(C) by introducing higher-order algebraic structures,
hyper-layered differential operators, and advanced residue calculus. We further distinguish each
structural case with specialized constructs and diagrams.

34.1. Case 1: Commutative and Associative Structure.
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34.1.1. Theorem: Hyper-Radial Derivatives and Taylor Expansion.

Theorem 34.1.1. Let f(y) be analytic near y0 in the commutative and associative framework.
Then f(y) can be expanded in terms of hyper-radial derivatives:

f(y) =
∞∑
k=0

D[k]
r f(y0)

k!
(y − y0)

k,

where D[k]
r represents the k-th hyper-radial derivative, defined by

D[k]
r =

(
d

dr

∣∣∣
r=|y−y0|

)k

.

Proof. The Taylor expansion with hyper-radial derivatives extends standard radial differentiation.
Each derivative is commutatively composed, preserving convergence due to the associative struc-
ture. □

34.2. Case 2: Commutative but Non-Associative Structure.

34.2.1. Definition: Nested Hyper-Differential Operators. Define a nested hyper-differential oper-
ator Hk in the commutative but non-associative case by:

Hkf(y) =

(
d

dy
· d

dy
· · · d

dy
· f(y)

)[k]

,

where each differentiation follows a specific nested non-associative order [k].

34.2.2. Theorem: Nested Hyper-Differentiation Taylor Series.

Theorem 34.2.1. For f analytic around y0 in the commutative but non-associative setting, the
Taylor series expansion using nested hyper-differential operators is given by:

f(y) =
∞∑
k=0

Hkf(y0)

k!
· (y − y0)

[k],

where Hk denotes the k-th nested hyper-differential operator.

Proof. Nested hyper-differentiation follows the specified non-associative order for each power,
resulting in a unique expansion for each sequence in [k]. □

34.3. Case 3: Associative but Non-Commutative Structure.

34.3.1. Definition: Symmetric and Anti-Symmetric Product Series. Define the symmetric and anti-
symmetric product series for a function f(y1, y2) in the associative but non-commutative frame-
work by:

f(y1, y2) =
∞∑
k=0

∞∑
j=0

ck,j ·
(
[y1, y2]

k{y1, y2}j
)
,

where [y1, y2] = y1 · y2 − y2 · y1 and {y1, y2} = y1 · y2 + y2 · y1.
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34.3.2. Theorem: Symmetric-Anti-Symmetric Residue Decomposition.

Theorem 34.3.1. For f(y1, y2) defined by a symmetric and anti-symmetric product series in an
associative but non-commutative setting, the residue at (y0,1, y0,2) can be decomposed as:

Res(y1,y2)=(y0,1,y0,2)f(y1, y2) =
0∑

k=−1

ck,0 · [y0,1, y0,2]k +
0∑

j=−1

c0,j · {y0,1, y0,2}j.

Proof. The decomposition follows from separating terms involving commutators and anti-commutators.
Each contributes uniquely due to the associative but non-commutative structure. □

34.4. Case 4: Neither Commutative nor Associative Structure.

34.4.1. Definition: Multi-Variable Hyper-Layered Differential Series. Define the multi-variable
hyper-layered differential series for a function f(y1, y2) in a non-commutative, non-associative
setting as:

f(y1, y2) =
∞∑
k=0

∞∑
j=0

(
ck,j ⋆D[k]

y1

)
⋆D[j]

y2
,

where D[k]
y1 and D[j]

y2 represent hyper-layered differential operators in y1 and y2 with unique non-
associative product orders.

34.4.2. Theorem: Path-Dependent Multi-Variable Hyper-Layered Series Convergence.

Theorem 34.4.1. In a non-commutative, non-associative Y3(C), the convergence of a multi-variable
hyper-layered differential series f(y1, y2) is path-dependent. For paths γ1 and γ2 approaching
(y0,1, y0,2),

lim
γ1→(y0,1,y0,2)

f(y1, y2) ̸= lim
γ2→(y0,1,y0,2)

f(y1, y2).

Proof. Each term’s convergence depends on the order imposed by the path of approach due to the
non-associative and non-commutative properties. Thus, different paths yield different limits. □

35. DIAGRAMS FOR NESTED HYPER-DIFFERENTIATION AND HYPER-LAYERED PRODUCT
SERIES

Diagram: Nested Hyper-Differentiation for Non-Associative Taylor Series.

f(y)

d
dy

· f(y)

H2f(y)

H1 H2

Nested Hyper-Differentiation

This diagram represents the iterative application of nested hyper-differential operators in the
non-associative case, illustrating the sequence of Hk operators.
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Diagram: Multi-Variable Hyper-Layered Differential Series.

γ1

(y0,1, y0,2)

γ2

HN1 HN2

Different Hyper-Layered Paths

The paths γ1 and γ2 illustrate differing convergence orders due to distinct hyper-layered se-
quences as they approach (y0,1, y0,2).
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